
Introduction

DII COE I&RTS: Rev 2.0 October 23, 1995 1-1

1.0 Introduction

The Defense Information Infrastructure (DII) Common Operating Environment
(COE) originated with a simple observation about command and control
systems: certain functions (mapping, track management, communication
interfaces, etc.) are so fundamental that they are required for virtually every
command and control system. Yet these functions are built over and over again
in incompatible ways even when the requirements are the same, or vary only
slightly, between systems. If these common functions could be extracted,
implemented as a set of extensible low level building blocks, and made readily
available to system designers, development schedules could be accelerated and
substantial savings could be achieved through software reuse. Moreover,
interoperability would be significantly improved because common software is
used across systems for common functions.

This observation led to the development of the DII COE which is presently used
in two systems: the Global Command and Control System (GCCS), and the
Global Combat Support System (GCSS). Both systems use the same
infrastructure and integration approach, and the same COE components for
functions that are common.

GCCS is a C4I system with two main objectives: the near-term replacement of the
World-Wide Military Command and Control System (WWMCCS) and the
implementation of the C4I For the Warrior concept. Functionally, as a C4I For the
Warrior system, GCCS includes multiple workstations cooperating in a
distributed LAN/WAN environment. Key features include "push/pull" data
exchange, data processing, sensor fusion, dynamic situation display, analysis
and briefing support, and maintenance of a common tactical picture among
distributed GCCS sites. GCCS is already fielded at a number of operational
CINCs.

GCSS is presently under development and is targeted for the warfighting
support functions (logistics, transportation, etc.) to provide a system that is fully
interoperable with the warfighter C4I system. Implemented to its fullest
potential, GCSS will provide both warfighter support to include reachback from
deployed commanders into the CONUS sustaining base infrastructure, and cross
functional integration on a single workstation platform.

Initial COE development was driven by the near-term requirement to build a
suitable WWMCCS replacement. WWMCCS maintenance costs are significant
and the system is rapidly reaching the point of technical obsolescence. A
significant component of the COE challenge is to strategically position the
system architecture so as to be able to take advantage of technological advances.
At the same time, the system must not sacrifice quality, stability, or functionality

Introduction

1-2 October 23, 1995 DII COE I&RTS: Rev 2.0

already in the hands of the warrior. In keeping with current DoD trends, the
COE emphasizes use of commercial products and standards where applicable to
leverage investments made by commercial industry.

To achieve the near-term WWMCCS replacement objective, technical experts and
program managers from each of the services, DODIIS, DMA, and other
interested agencies met for several months beginning in the fall of 1993.
Participants proposed candidate systems as a possible starting point for the COE
architecture, or as a suitable candidate for providing capabilities to meet
WWMCCS replacement requirements. None of the candidate systems met all
requirements, but it was clear that a combination of the "best" from several
systems could produce a near term system that would be suitable for WWMCCS
replacement. Moreover, an infrastructure could be put into place and a
migration strategy defined to preserve legacy systems until migration to the
intended architecture could be realized.

The cornerstone architectural concept jointly developed during these series of
meetings is the DII COE. The present COE is composed of software contributed
from several candidate systems evaluated by this joint engineering team. It is
being expanded to include global data management and workflow management
for GCSS logistics applications. It will expand further as more functional areas
desire to employ its services in areas such as Electronic Commerce/Electronic
Data Interchange (EC/EDI), transportation, base support, personnel, health
affairs, and finance. The COE is described more completely in later chapters of
this document. This document also describes technical information required to
properly access and extend software contained within the COE.

An initial proof-of-concept system, GCCS 1.0, was created and installed in early
1994 at one operational site to validate the approach and to receive early
feedback. GCCS 1.1 followed in the summer of 1994 and was the first attempt to
integrate software from the Army AWIS and Navy JMCIS programs as initial
COE components. GCCS 1.1 included mission applications from a variety of
other programs operating in a "federated" mode. That is, constructed so as to be
able to run on the same hardware without interfering with other software, but
not yet able to effectively share data between applications. This successful effort
allowed GCCS 1.1 to be installed and tested at beta sites and was used at certain
operational sites to monitor events during the 1994 Haiti crisis. GCCS 2.0
fielding began in early 1995 at a number of operational sites. GCCS 2.1 was
fielded in mid-1995. A prototype version of GCCS 2.2 was the basis for JWID 95.
The 2.0 series marks the real beginning of the DII COE concept. Its use is crucial
in being able to rapidly integrate software from candidate programs to
successfully build a baseline with an ever increasing level of functionality.

The DII COE has its roots in command and control, but the principles and
implementation described in this document are not unique to GCCS nor GCSS.

Introduction

DII COE I&RTS: Rev 2.0 October 23, 1995 1-3

The principles and implementation are not limited to command and control or
logistics applications, but are readily applicable to many other application areas.
The specific software components selected for inclusion in the COE determine
the mission areas that the COE can address.

The concepts herein represent the culmination of open systems evolutionary
development from both industry and government with contributions from each
of the services. The resulting COE architecture is an innovative framework for
designing and building military systems. Because it reuses software contributed
by service/agency programs, it utilizes field proven software for common C4I
functions. The engineering procedures for adding new capabilities and
integrating systems are mature, and have been used for several Navy JMCIS
releases as well as in all GCCS production releases. The end result is a strategy
for fielding systems with increased interoperability, reduced development time,
increased operational capability, minimized technical obsolescence, minimal
training requirements, and minimized life cycle costs.

The DII COE Concept

1-4 October 23, 1995 DII COE I&RTS: Rev 2.0

1.1 The DII COE Concept

The DII COE concept is a fundamentally new approach that is much broader in
scope than simple software reuse. Software reuse itself is not a new idea.
Unfortunately, most software reuse approaches to date have been less than
satisfactory. Reuse approaches have generally emphasized the development of a
large software repository from which designers may pick and choose modules,
or elect to rebuild modules from scratch. It is not sufficient to have a large
repository, and too much freedom of choice leads to interoperability problems
and duplication of effort. This rapidly negates the advantages of software reuse.

The DII COE does emphasize both software reuse and interoperability, but its
principles are more far reaching and innovative. The COE concept encompasses:

¥ an architecture and approach for building interoperable systems,
¥ an infrastructure for supporting mission area applications,
¥ a rigorous definition of the runtime execution environment,
¥ a rigorous set of requirements for achieving COE compliance,
¥ an automated toolset for enforcing COE principles and measuring COE

compliance,
¥ an automated process for software integration,
¥ a collection of reusable software components,
¥ an approach and methodology for software reuse,
¥ a set of APIs for accessing COE components, and
¥ an electronic process for submitting/retrieving software components

to/from the COE software repository.

This document first and foremost describes how modules must interact in the
target system. System architects and software developers retain considerable
freedom in building the system, but runtime environmental conflicts are
identified and resolved through automated tools that enforce COE principles.
An important side effect is that traditional integration tasks become the
responsibility of the developer. Developers are required to integrate and test
their software within the COE prior to delivering it to the government. This
simplifies integration because it is performed by those who best understand the
software design (the original developers), it reduces the cost because integration
is performed earlier and at a lower level in the process, and it allows the
government to concentrate on validation instead of integration.

In the context of this document, the COE must be understood as a multi-faceted
concept. Proper understanding of how the many facets interact is important in
appreciating the scope and power of the DII COE, and to avoid confusion in
understanding COE material. The next subsection deals with three specific facets

The DII COE Concept

DII COE I&RTS: Rev 2.0 October 23, 1995 1-5

in more detail: the COE as a system foundation, the COE as an architecture, and
the COE as an implementation strategy.

To view the COE as a C4I system is incorrect because it misses the fundamental
point that the COE is not a system; it is a foundation for building an open system.
This viewpoint also makes fielding and update schedules confusing because it
fails to account for the impact of the evolutionary development strategy. To view
the COE as GCCS or just an architecture gives the mistaken impression that its
principles are limited to the GCCS program. GCCS is simply the first system
build on top of the DII COE while GCSS is in progress. This view also fails to
account for the fact that a baseline already exists composed of components
selected from mature service/agency programs. Finally, to view the COE as just
an implementation strategy is a limited perspective because it fails to account for
the fact that there is a near term real world objective (WWMCCS replacement). It
ignores the evolutionary nature of the COE and mission applications
development, and it ignores the implied requirement to provide an easy update
mechanism for operational sites.

1.1.1 The DII COE As A System Foundation

Figure 1-1 shows how the DII COE serves as a foundation for building multiple
systems. The shaded box shows two types of reusable software: the operating
system and COE components. Chapter 2 describes the COE components in more
detail, and the supported operating systems. For the present discussion, it is
sufficient to note that these components are accessed through APIs and that they
form the architectural backbone of the target system.

Building a target system, such as GCCS or GCSS, is largely a matter of
combining COE components with mission specific software. The COE
infrastructure manages the flow of data through the system, both internally and
externally. Mission specific software is mostly concerned with requesting data
from the COE and then presenting it in a form that is most meaningful to the
operator (e.g., as a pie chart, in tabular form, as a graph). The COE provides the
necessary primitives for such data manipulation, and has the necessary
information about where the requested data is stored, whether locally or
remotely across the LAN/WAN. This frees the system designer to concentrate
on meaningful data presentation and not on the mechanics of data manipulation,
network communications, database storage, etc.

It must be kept in mind, however, that there is only one COE. Each system uses
the same set of APIs to access common COE components, the same approach to
integration, and the same set of tools for enforcing COE principles. Systems are
built on top of the COE and use precisely the same COE software components,
not just the same algorithms, for common functions (e.g., communications

The DII COE Concept

1-6 October 23, 1995 DII COE I&RTS: Rev 2.0

interfaces, dataflow management). This approach to software reuse significantly
reduces interoperability problems because if the same software is used, it is not
possible to have two systems that interpret or implement standards differently.
The next subsection describes the features of GCCS and GCSS in more detail as
examples of COE based systems.

GCCS GCSS EC/EDI Other

COE Based Systems

H/W Platform

Standard Application Program Interfaces

COE Components

Operating System Services

R
eu

sa
bl

e
So

ft
w

ar
e

DII COE

Figure 1-1: DII COE and COE Based Systems

1.1.1.1 GCCS As A COE-Based System

GCCS is a system specifically designed to meet the C4I requirements of the
warrior at various echelons within the command structure. It consists of
geographically distributed workstations inter-connected via LAN/WAN
technologies on a classified network (SIPRNET). The features provided and the
LAN/WAN topology allow warriors to collaboratively share mission
responsibilities. Collaboration is possible in areas as diverse as creating Time
Phased Force and Deployment Data (TPFDD), distributing Air Tasking Orders
(ATO), performing intelligence analysis, and maintaining a common view of the

The DII COE Concept

DII COE I&RTS: Rev 2.0 October 23, 1995 1-7

battlefield with up-to-date display of the deployment of all joint and enemy
forces.

The GCCS system provides a suite of capabilities across a number of mission
application areas that include the following:

• Manpower Requirements Analysis • Transportation Planning
• Force Planning • Resource Management
• Collaborative Mission Planning • Fuel Resource Planning
• All Source Data Fusion & Correlation • Teleconferencing
• Office Automation • Scheduling and Movement
• Logistics Support • Medical Planning
• Status of Readiness Reports • Comms and Msg Handling
• Cartographic and Imagery • Intelligence Analysis

Display and Analysis

The sheer magnitude and capability of GCCS can quickly overwhelm even the
most experienced operators. However, the COE provides system administration
tools to allow site administrators to selectively install only those software
applications required for the site. This minimizes hardware requirements and
simplifies site administration. Site administrators can further tailor the
installation so that operators are given access to only those applications that
pertain to their mission area, or for which they have the proper clearances. GCCS
allows an operator to access any function, for which they are authorized, from
any workstation so that privileges are tied to the operator, not a specific
workstation.

Software updates are periodically made available as new capabilities are
developed, or as software patches are created to fix problems. Site
administrators can receive these updates via tapes, or electronically across the
SIPRNET. Electronic updates are available in either a "push" (e.g., the update
process is initiated electronically by a DISA Software Support Activity) or "pull"
mode (e.g., the update process is initiated electronically by the operational site).

1.1.1.2 GCSS As A COE-Based System

GCSS is designed to fulfill warfighter acquisition and logistics support functions.
As with GCCS, the system consists of geographically distributed workstations
inter-connected via LAN/WAN technologies on a classified network. Operators
have shared access to technical manuals, drawings, Engineering Change
Proposals (ECPs), and status of work in progress regardless of their geographic
location. This collaborative feature of GCSS is similar to the teleconferencing
capability of GCCS and is supported by the same COE infrastructure. The GCSS

The DII COE Concept

1-8 October 23, 1995 DII COE I&RTS: Rev 2.0

system effectively integrates people and organizations, data and information,
and work processes across the enterprise.

GCSS provides a comprehensive suite of capabilities related to the acquisition
process, and to logistics support. Many of the capabilities, such as office
automation, are identical to GCCS and hence use the same COE components.
Other requirements, such as the need to support the CALS standard, are GCSS
unique. Major features include the following:

• Engineering Drawings Support • Training Plans
• Depot Maintenance Support • Reliability Data Management
• Materiel Management • Configuration Management
• Technical Orders • Teleconferencing
• Workflow Management and Metrics • Office Automation
• Pert Charts • CALS Support
• Logistics Support Analysis • Cost and Schedule Tracking
• Access to Non-destructive Imaging Data

GCSS uses the same COE system administration tools as GCCS to allow site
administrators to selectively install only those software applications required for
the site. This minimizes hardware requirements and simplifies site
administration. Site administrators can further tailor the installation so that
operators are given access to only those applications that pertain to their area of
responsibility.

Software updates are periodically made available as new capabilities are
developed, or as software patches are created to fix problems. Site
administrators can receive these updates via tapes, or electronically in the same
manner as GCCS site administrators.

1.1.2 The DII COE As An Architecture

The DII COE is a "plug and play" open architecture designed around a
client/server model. Functionality is easily added to or removed from the target
system in small manageable units, called segments. Segments are defined in
terms of functions that are meaninful to operators, not in terms of internal
software structure. Structuring the software into segments in this manner is a
powerful concept that allows considerable flexibility in configuring the system
to meet specific mission needs or to minimize hardware requirements for an
operational site. Site personnel perform field updates by replacing affected
segments through use of a simple, consistent, graphically oriented user interface.

The DII COE model is analogous to the Microsoft Windows® paradigm. The idea
is to provide a standard environment, a set of standard off-the-shelf components,

The DII COE Concept

DII COE I&RTS: Rev 2.0 October 23, 1995 1-9

and a set of programming standards that describe how to add new functionality
to the environment. The Windows paradigm is one of "federation of systems" in
that properly designed applications can coexist and operate in the same
environment. But simple coexistence is not enough. It must be possible for
applications to share data. While Windows allows some limited data sharing
through "cut and paste" between windows, there is no underlying infrastructure
for data sharing at a deeper level. The DII COE extends the Windows paradigm
to allow for true "integration of systems" in that mission applications share data
at the server level.

Federation versus integration is an important architectural advantage. However,
integration is not possible without strict standards that describe how to properly
build components to add to the system. This document, and other related
documents, detail the technical requirements for a well behaved, COE-compliant
application. The COE provides automated tools to measure compliance and to
pinpoint problem areas. A useful side effect of the tools and procedures is that
software integration is largely an automated process, thus significantly reducing
development time while automatically detecting potential integration and
runtime problem areas.

More precisely, to a developer the DII COE is:

¥ An Architecture: A precisely defined TAFIM-compliant (Technical
Architecture Framework for Information Management), client/server
architecture for how system components will interact and fit together, and
a definition of the system level interface to COE components.

¥ A Runtime Environment: A standard runtime operating environment
that includes "look and feel," operating system, and windowing
environment standards. Since no single runtime environment is possible
in practice, the COE architecture provides facilities for a developer to
extend the environment in such a way as to not conflict with other
developers.

¥ Software: A clearly defined set of already implemented, reusable
functions.

¥ APIs: A collection of Application Programmer Interfaces (APIs) for
accessing COE components. Thus, the COE is a set of building blocks in
the same sense that X Windows and Motif are building blocks for creating
an application's Graphical User Interface (GUI).

DISA maintains the software in an on-line configuration management repository
called CSRS (COE Software Repository System). This decreases the development

The DII COE Concept

1-10 October 23, 1995 DII COE I&RTS: Rev 2.0

cycle by allowing developers to receive software updates, or to submit new
software segments, electronically.

1.1.3 The DII COE As An Implementation Strategy

The COE is also an evolutionary acquisition and implementation strategy. This
represents a departure from traditional development programs. It emphasizes
incremental development and fielding to reduce the time required to put new
functionality into the hands of the warrior, while not sacrificing quality nor
incurring unreasonable program risk or cost. This approach is sometimes
described as a "build a little - test a little - field a lot" philosophy. It is a process
of continually evolving a stable baseline to take advantage of new technologies
as they mature and to introduce new capabilities. But the changes are done one
step at a time so that the warfighters always have a stable baseline product while
changes between successive releases are perceived as slight. Evolutionary
development has become a practical necessity for many development programs
because the traditional development cycle time is longer than the technical
obsolescence cycle time.

From the perspective of a COE-based system, the implementation strategy is to
field new releases at frequent intervals. Each release might include
enhancements to both the COE and mission area applications. Mission area
applications are considered to be provisional, subject to user feedback.
Applications for which feedback is favorable are retained in subsequent releases
and hardened as needed for continued operational use. As appropriate, mission
applications that are widespread in use and commonalty will be integrated into
the COE, or evolved to add new features.

The COE implementation strategy is carefully structured to protect functionality
contained in legacy systems so that over time they can migrate to full COE
utilization. This is achieved through publishing "public" and "private" APIs.
Public APIs are those interfaces to the COE that will be supported for the life
cycle of the COE. Private APIs are those interfaces that are supported for a short
period of time to allow legacy systems to migrate from unsanctioned to
sanctioned APIs. All new development is required to use only public APIs and
use of any other APIs results in a non-COE compliant segment. The process of
migrating from existing legacy "stove-pipe" systems to utilize the COE is a
primary source for articulating technical requirements for the COE, and it
provides program managers with information useful to establish development
priorities.

From the perspective of a system developer, whether developing a new
application or migrating an existing one, the COE is an open client/server
architecture that offers a collection of services and already built modules for

The DII COE Concept

DII COE I&RTS: Rev 2.0 October 23, 1995 1-11

mission applications. Thus, the developer's task is to assemble and customize
existing components from the COE while developing only those unique
components that are peculiar to particular mission requirements. In many if not
most cases, this amounts to adding new "pull down menu entries and icons."

Lessons Learned

1-12 October 23, 1995 DII COE I&RTS: Rev 2.0

1.2 Lessons Learned

The COE as the embodiment of an architectural concept offers the opportunity to
leverage a mature, proven, field tested software base for a wide variety of
applications for the services, agencies, and Joint community. As budgets shrink
and as budgetary priorities shift, program managers require the ability to
continue to respond rapidly with systems that satisfy the information needs of
United States and Allied Armed Forces. The COE implementation strategy is a
significant advancement in fulfilling this ongoing need.

Examination of state-of-the-art development in light of these realities results in a
set of fundamental tenets that greatly influence the history, future, and direction
of the DII COE. An explanation of these tenets is useful in understanding the
COE as a whole.

¥ Current practices lead to development and redevelopment of the same
functionality across systems. Redevelopment is frequently necessary because
of technological changes as algorithms are improved or as hardware
becomes faster and cheaper. However, development cost is often due to a
lack of coordination between programs which share common
requirements.

¥ Duplication of functionality within the same system is more expensive than
avoiding duplication. Lack of coordination between program developers is
a fundamental cause for duplicative functions, but an additional factor is
that reuse libraries are not commonly available. The impact is more than
just program costs. System users are often given conflicting information
even in the presence of identical data because designers took slightly
different approaches to solving the same problems, or made slightly
different assumptions.

¥ Interoperability is not achievable through "paper" standards alone.
Interoperability problems are generally caused, not by the standards
chosen, but by differing or incorrect interpretations of standards. System
designers often choose different standards with which to comply, but
even when the standards are the same, different interpretations of the
standards can greatly change the way the resulting system operates. The
COE emphasizes use of industry and government standards, but relies
even more on automated ways of measuring and evaluating compliance,
and thus quantitatively evaluating program risk. The only practical way
to achieve interoperability is to use exactly the same software, written to
appropriate standards, for common functions across applications. For
example, the COE contains a common correlator to ensure that all users
see the same tactical picture. The answer produced by the correlator may

Lessons Learned

DII COE I&RTS: Rev 2.0 October 23, 1995 1-13

be incorrect, but it will be incorrect for all users. But this also means that a
problem correction in one place then becomes effective for all users.

¥ Current practices lead to exponential growth in testing and associated
development costs. Lack of commonalty and modularity in system building
blocks means that there is much duplication of effort in testing basic
functionality and testing in one section of a system is often tightly coupled
to testing in another section. This complicates and extends the certification
process. Configuration management, system integration, and long term
maintenance are also more complex and costly when there is a lack of
commonalty and modularity in system building blocks.

¥ The importance of training is usually underestimated, and the magnitude of the
training problem is increasing. An operator is often expected to use multiple
systems which behave completely differently, are equally complex with
their own subtleties, and which give slightly different answers. Operator
turnover is rapidly reaching the point where the time it takes to train an
operator is a significant portion of the time the operator is assigned to his
current tour of duty. Training is greatly reduced by a consistent "look and
feel" and by the ability to present to the operator only those functions
useful for his task.

¥ Don't reinvent the wheel. If a component already exists, it should probably
be utilized even if the component is not the optimum, best possible
solution. Almost any module can be improved but that is rarely the issue.
Reuse of existing and proven software allows focus of attention on
mission uniqueness. Rather than concentrating scarce development
resources on recreating building blocks, the resources can be more
appropriately applied to customization and development of functionality
that is not already available.

¥ Utilize existing commercial standards and products whenever feasible. The
commercial marketplace generally moves at a faster pace than the military
marketplace and advancements are generally available at a more rapid
rate. Use of commercial products has several advantages. Production costs
are lowered by using already built items. The probability of product
enhancements is increased because the marketplace is larger. The
probability of standardization is increased because it is driven by a larger
customer base.

Assumptions and Objectives

1-14 October 23, 1995 DII COE I&RTS: Rev 2.0

1.3 Assumptions and Objectives

The following assumptions apply to the DII COE:

¥ The DII COE will migrate to full compliance with the TAFIM standards
profile. These standards promote an open systems architecture, the
benefits of which are assumed to be well known and generally accepted.

¥ The DII COE is to be hardware independent and will operate on a range
of open systems platforms running under standards-based operating
systems. Program driven requirements, associated testing costs, and
funding will dictate which specific hardware platforms are given priority.

¥ Non-developmental items (NDIs), including both commercial off-the-
shelf (COTS) and government off-the-shelf (GOTS) products, are the
preferred implementation approach.

WWMCCS replacement was the main focus for near-term development, while
longer-term development is driven by C4I For the Warrior requirements,
logistics support requirements for GCSS, and by financial support requirements
for EC/EDI. These broad program drivers lead to a number of program
objectives that include those stated in the TAFIM, Volume 2:

1. Commonalty: Develop a common core of software that will form the
foundation for Joint systems, initially for C4I and logistics systems.

2. Reusability: Develop a common core of software that is highly reusable
to leverage the investment already made in software development
across the services and agencies.

3. Standardization: Reduce program development costs through
adherence to industry standards. This includes use of commercially
available software components whenever possible.

4. Engineering Base: Through standardization and an open architecture,
establish a large base of trained software/systems engineers.

5. Training: Reduce operator training costs and improve operator
productivity through enforcement of a uniform human-machine
interface, commonalty of training documentation, and a consistent "look
and feel."

6. Interoperability: Increase interoperability through common software
and consistent system operation.

Assumptions and Objectives

DII COE I&RTS: Rev 2.0 October 23, 1995 1-15

7. Scalability: Through use of the segment concept and the COE
architectural infrastructure, improve system scalability so that COE-
based systems will operate with the minimum hardware resources
required.

8. Portability: Increase portability through use of open systems concepts
and standards. This also promotes vendor independence for both
hardware and software.

9. Security: Improve system security.

10. Testing: Reduce testing costs because common software can be tested
and validated once and then applied to many applications.

Document Scope

1-16 October 23, 1995 DII COE I&RTS: Rev 2.0

1.4 Document Scope

This document describes the technical requirements for building and integrating
software components on top of the DII COE. It provides implementation details
which describe, from a software development perspective, the following:

¥ the Common Operating Environment (COE) approach to software reuse,
¥ the runtime execution environment,
¥ the requirements for COE compliance,
¥ how to structure components to automate software integration, and
¥ how to electronically submit/retrieve software components to/from the

software repository.

This document supersedes all earlier draft versions, presentations,
or working group notes. It specifically supersedes all previous
JMCIS COE and Integration Standard documents, and all previous
GCCS or DII Integration Standard documents. All segments
submitted to DISA are required to be in accordance with this
document.

Applicable Documents and Standards

DII COE I&RTS: Rev 2.0 October 23, 1995 1-17

1.5 Applicable Documents and Standards

This document is one in a series of related documents which define development
requirements, system architecture, engineering tools, and implementation
techniques. Many of the documents cited are available on the World Wide Web,
or contact the DISA Engineering office for information on how to obtain the
desired documents.

Because the COE and COE-based systems are ongoing programs, enhancements
and additional features are developed on a regular basis. Documentation
updates are regularly released for each of the documents listed here. Be sure to
always reference the latest version for the documents listed below, and be aware
that many of the documents are being modified and extended to address DII
COE-based systems, not just GCCS or GCSS..

DISA, GCCS Common Operating Environment Baseline, November 28, 1994.
This document is updated for each GCCS release and contains detailed
information on the content of each GCCS release. Of particular
importance is the exhaustive list of all public APIs included in the release
and titles of applicable API documents.

DISA, GCCS Common Operating Environment Requirements, August 15,
1994. This document is updated for each GCCS release and contains the
requirements definition for the release.

DISA Joint Interoperability Testing Command (JITC), GCCS 3.0
Compliance Program Plan, Draft Version. This document is a proposal for
how to formally test segments for GCCS COE compliance. It is currently
in draft form and is undergoing revision. It will form the basis for
measuring COE compliance across all COE-based systems.

DoD, Technical Architecture Framework for Information Management. This is a
multi-volume document which defines a standards profile and the DoD
Technical Reference Model (TRM) for information management systems.

Institute for Defense Analyses (IDA), Architectural Design Document for the
Global Command and Control System (GCCS) Common Operating Environment
(COE). This document is the definitive technical description of the COE. It
documents the architectural design produced by the GCCS COE Design
Working Group. This document will be extended to encompass the DII
COE for all COE-based systems.

NRaD, User Interface Specification for GCCS. This document, sometimes
called the Style Guide, defines the "look and feel" for developing user

Applicable Documents and Standards

1-18 October 23, 1995 DII COE I&RTS: Rev 2.0

interfaces for GCCS. This style guide is closely patterned after the
commercial Motif style guide. This guide is presently being extended to
address all COE-based systems, and is being extended to include
Microsoft Windows and Windows NT styles.

The following documents are useful for a historical perspective on the evolution
of COE concepts. The list is not comprehensive, but gives previous versions of
documents which preceded this one.

INRI, Joint Maritime Command Information System (JMCIS) Common
Operating Environment (COE), Version 1.3. This document defines the
runtime environment requirements for JMCIS segments.

NRaD, Joint Maritime Command Information System (JMCIS) Integration
Standard, Version 2.0. This document defines requirements for how
developers are to submit software segments to the SPAWAR Software
Support Activity (SSA) at the Navy Command, Control, and Ocean
Surveillance Center Research, Development, Test & Evaluation Division
(NRaD) in San Diego, California. It also contains information on the
Navy's JMCIS On-line Library (JOL) which served as a foundation for
creating CSRS.

NRaD, Global Command and Control System Integration Standard,
Version 1.0. This document contains information combined from the two
referenced JMCIS documents as adapted for use in GCCS.

Document Structure

DII COE I&RTS: Rev 2.0 October 23, 1995 1-19

1.6 Document Structure

This document is structured to correspond to the typical phases in a
development cycle, beginning with how a developer builds a segment, submits
it to the government, and then how it is fielded to an operational site. Chapter 1
of this document is an overview of the DII COE, a brief history of its
development, and applicable documents and standards.

Chapter 2 gives a brief technical description of the COE, it's components, and the
principles which determine whether a software component is part of the COE or
is a mission application. Selection of the particular components contained in the
COE determine what applications can be supported, but the principles which
define a COE are not application specific.

Chapter 3 is an overview of the development process. It includes a discussion of
the process from segment registration through development, submission to
CSRS, integration, and site installation. The tools provided in the COE and how
they are used is key to understanding automated integration.

Chapter 4 describes database considerations within the context of the COE.
Databases are heavily used within COE-based systems, and early consideration
of their structure, how they are to be used, and how they are to fit into the
overall system is crucial in building a successful system.

Chapter 5 describes the runtime environment as it exists for operational sites, the
disk directory and file structure fundamental to the COE, and the procedures for
integrating segments into a runtime environment. Requirements detailed in
Chapter 5 must be carefully followed so that applications will not interfere with
each other, and so that integration is largely an automated process.

Chapter 6 provides some suggestions for setting up a software development
environment. Few requirements are stipulated for a development environment
to allow as much freedom for developers and program managers as possible.

Chapter 7 describes two important components for both developers and
operational sites: the on-line COE Software Repository System (CSRS), and the
COE Information Server (CINFO). These components are used to disseminate
and manage software, documentation, meeting notices, and general information
of importance to the COE community.

Appendix A lists the currently supported COE configurations. The appendix
includes supported hardware, and supported COTS versions.

Document Structure

1-20 October 23, 1995 DII COE I&RTS: Rev 2.0

Appendix B presents a checklist for developers to use as an aid in determining
the degree to which a segment is COE compliant. As described in the appendix,
some conditions are mandatory, others require a migration strategy to show
conformance, while others are optional but recommended.

Appendix C describes the automated tools provided with the COE. The
philosophy is to provide developers with access to the same tools that
integrators will use so that as much as possible, segment integration is
performed by the segment developers prior to segment delivery. Integration of
segments with the COE is the responsibility of the segment developer.
Government integrators serve as validators only in this process to ensure that
developers produce COE-compliant segments. In addition to segment validation,
government integrators perform system level integration of all segments
submitted by all developers to create the target system.

Appendix D gives additional information on the on-line repository CSRS, and
the information server CINFO.

Segment registration is required so as to identify potential conflicts as early in
the development cycle as possible. Appendix E describes how to register a
segment, and what information is required for registration.

Appendix F provides additional database related information. It identifies
RDBMS vendor specific considerations.

Appendix G is a draft supplement that describes how to build PC-based
segments. It also describes the purpose and operational use of PCs in the context
of COE-based systems.

The Glossary contains a definition of commonly encountered terms.

